<table>
<thead>
<tr>
<th>Title</th>
<th>Energy storage: nanostructured manganese dioxide for supercapacitor application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Loke, Ek Siang</td>
</tr>
<tr>
<td>Citation</td>
<td>Loke, E. S. (2010, March). Energy storage: nanostructured manganese dioxide for supercapacitor application. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9036</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 The Author(s).</td>
</tr>
</tbody>
</table>
Energy Storage: Nanostructured Manganese Dioxide for Supercapacitor Application

1. **Introduction**
 Supercapacitors are energy storage devices that use carbon, conductive polymers and transition metal oxides such as MnO₂ as electrode material. They are different from traditional capacitors due to their storage mechanism and the ability to store much more energy.

2. **Goal**
 To improve the specific capacitance of manganese dioxide by maximizing the surface area of the electrode.

3. **Methodology**
 Tri-block copolymer, P123, used as soft template
 - P123 dissolves in water and form micelles
 - Add Mn²⁺ ions which surround the micelles
 - Mn²⁺ oxidizes to MnO₂ by KMnO₄
 - MnO₂ precipitated
 - Remove P123 by washing with water
 - Mesoporous MnO₂ obtained

4. **Results**
 - SEM shows hierarchical nano-rod morphology
 - XRD shows α-MnO₂ phase
 - CV curves at various scan speed close to rectangular shape, shows relatively ideal pseudo-capacitive behavior

5. **Conclusion**
 We have synthesized mesoporous α-MnO₂ using P123 and achieved a maximum specific capacitance of 355F/g. More work will be done to optimize the performance of our electrode material.